On Farm Testing (OFTS)

1. Title: Assessment of new gram variety (Gujarat Junagadh Gram-6) variety

Problem: Farmer use low yielded oldest variety.

Causes:

- Lack of information about newly available variety as well as oldest variety disease susceptible.
- · Lack of interest in adoption of new variety

Problem Cause Diagram

Lack of information about newly available variety as well as oldest variety disease susceptible.

Farmer use low yielded oldest variety

Lack of interest in adoption of new variety

Treatments:

1	Г1:	Farmer practices (Control): Sowing of Locally available variety (GJG-3) farmers
1	Γ2:	Use of Improved variety of Chick pea (GJG-6)
1	г3:	Use of Improved variety of chick pea Phule Vikram

Source of technology (T2): JAU, Junagadh, (T3): MPKV, Rahuri

Technical Indicator:

1. 100 grain weight, 2. Plant height (cm) 3. Yield (q/ha) 4. No of branches

Economic Indicator:

1. Cost of production, 2. Gross return (Rs/ha), 3. Net Return (Rs/ha), 4. B:C ratio

Cost:

T1:	seed of locally available variety, 5600 per hector
	(Total cost about ₹5600/ha X 2 ha = ₹11200/-)
T2:	Seed of Improved variety of Chick pea 7500 per hector
	(Total cost about ₹ 7500/ha X 1 ha = ₹7500/-)
T3:	Seed of phule vikram variety 7500 per hector
	(Total cost about ₹7500/ha X 1 ha = ₹7500/-)

No. of Farmers : 05
Experimental Size : 1 Acre
Duration of Experiments : 3 Year

2. Title: Assessment of new Green gram variety (Gujarat Moong - 6) variety

Problem: Farmers use oldest variety GM-2/4 some long time.

Causes:

- Lack of information about recommendation of new green gram varieties.
- Old variety having low yield potential and disease and pest susceptible

Problem Cause Diagram

Treatments:

T1:	Farmer practices (Control): Locally available green gram variety (GM 2/4)
T2:	Use of new improved variety of Green gram (GM-6)
T3:	Use of new improved variety of Gujarat Anand Moong 5 (GAM-5)

Source of technology (T2): SDAU, Dantiwada, (T3): AAU, Anand

Technical Indicator:

1. No of Pods, 2. Plant Height, 3. Yield (q/ha), 4. No of branches 5. Test weight

Economic Indicator:

1. Cost of production, 2. Gross return (Rs/ha), 3. Net Return (Rs/ha), 4. B:C ratio

Cost:

T1:	Green gram variety GM-2/4 seed rate 25 kg/ha; @ ₹ 100/-/Kg
	(Total cost about ₹2500/-/ha X 2 ha = ₹ 2000/-)
T2:	New Green gram variety (GM-6), seed rate 25 kg/ha; @ ₹ 140/-/kg
	(Total cost about ₹3500/-/ha X 1 ha = ₹ 3500/-)
T3:	New green gram variety (GAM-5), seed rate 25 kg/ha; @ ₹ 140/-/kg
	(Total cost about ₹3500/-/ha X 1 ha = ₹ 3500/-)

No. of Farmers : 05
Experimental Size : 1 Acre
Duration of Experiments : 3 Year

3. Title: Management of mango hopper

Problem: Heavy incidence of mango hopper

Causes:

- Improper use of pesticides
- Lack of application of bio pesticides

Treatments:

T1:	Farmer's Practices: - Improper use of pesticides; not follow the recommendation
T2:	Two sprays of Thiamethoxam 25% WG (3.36 g/10 lit) or Imidacloprid 17.8 SL (2.80 ml/10 lit).
	First spray at flowering and second spray at 21 days after first spray
T3:	Two sprays of Azadirachtin 1500 ppm (50 ml+10 g. Washing powder / 10 lit. water) First spray
	at ETL (5 hopper/inflorance) and second at 10 days after first spray

Source of technology (T2) NAU, Navsari (T3): AAU, Anand

Technical Indicator: 1. Pest infestation (%) 2. Yield (q/ha)

Economic Indicator: 1. Cost of Production (Rs/ha), 2. Gross return: (Rs/ha), 3. Net return: (Rs/ha), 4.

B:C Ratio

Cost:

T1:	Farmer's Practices: - Improper use of pesticides
T2:	Two sprays of Thiamethoxam 25% WG (3.36 g/10 lit) @ 210 gm/625 lit water per acre @₹400/- Or Imidacloprid 17.8 SL (2.80 ml/10 lit) @ 175 ml/625 lit water per acre @₹440/ First spray at flowering and second spray at 21 days after first spray (Total cost about ₹840/-/acre X 2.5 acre = ₹2100/-)
Т3:	Two sprays of Azadirachtin 1500 ppm (50 ml+10 g. Washing powder / 10 lit. Water) @ 6.24lit /1250 lit water per acre @₹3300/- First spray at ETL (5 hopper/inflorance) and second at 10 days after first spray. (Total cost about ₹3300/-/acre X 2.5 acre = ₹8250/-)

No. of Farmers : 05

Experimental Plot Size : 1 Acre

Duration: 3 year

4. Title: Management of white grub in groundnut

Problem: Infestation of white grub in groundnut

Causes:

- Lack of seed treatment
- Lack of pre application of pesticides

Treatments:

T1:	Injudicious use of pesticides. Use of chlorpyriphos, quinalphos, clothianidine, imidacloprid+ Fipronil,
	Thiamethoxam after infestation of white grub as post application.
T2:	Recommended dose of Pesticide as Chlorpyriphos or Quinalphos @ 25 ml/kg seed. Drenching of
	Chlorpyriphos or Quinalphos @ 4 lit/ha as initiation of pest incidence
T3:	Application of ready mix combination of Imidacloprid 40% + Fipronil 40% WG@ 2.5 g/kg seed.
	Drenching of ready mix combination of Imidacloprid 40% + Fipronil 40% WG @ 250 g/ha as initiation
	of pest incidence

Source of technology: Junagadh Agricultural University

Technical Indicator:

1. Record no. of grub per 1 meter row length. 2. Yield (q/ha)

Economic Indicator:

1. Cost of Production (Rs/ha), 2. Gross return: (Rs/ha), 3. Net return: (Rs/ha), 4. B:C Ratio

Cost:

T1:	Injudicious use of pesticides.use of chlorpyriphos, quinalphos, clothianidine, imidacloprid+
	Fipronil, Thiamethoxam after infestation of white grub as post application.
T2:	Chlorpyriphos or Quinalphos @ 25 ml/kg seed per acre 1.25 lit @ ₹500/- and Chlorpyriphos or
	Quinalphos @ 1.6 lit/acre @ ₹640/-
	(Total cost about ₹1140/-/acre X 2.5 acre = ₹2850-)
T3:	Imidacloprid 40% + Fipronil 40% WG @ 2.5 g/kg seed per acre 125 gm @ ₹2000/- and
	Imidacloprid 40% + Fipronil 40% WG @ 100 g/acre @ ₹1600/-
	(Total cost about ₹3600/-/acre X 2.5 acre = ₹9000/-)

No. of Farmers : 05
Experimental Plot Size : 1 Acre
Duration : 3 year

5. Refinements superior technology against nematode management in onion

Problem: Yield losses due to Nematode problem.

Causes:

- Lack of information about newly available technology.
- Lake of interest in adoption of new technology.

Problem Cause Diagram

Treatments:

T1:	Farmer practices (Control): No use of pseudomonas luorescens and Trichoderma and EPN
T2:	Use of organic formulation containing Pseudomonas luorescens & Trichoderma harzianum has to be sprayed on the plants at regular intervals of 30 days
T3:	Use of EPN 2.5 kg/ha

Source of technology (T2): IIHR, Bangalore, (T3): IARI, New Delhi

Technical Indicator: 1. No of Infested plant per sqm. 2. Bulb diameter 3. Yield (q/ha)

Economic Indicator: 1. Cost of production, 2. Gross return (Rs/ha),

3. Net Return (Rs/ha), 4. B:C ratio

Cost:

T1:	Farmer Practices: Only use of chemical (carbofuran 3G)
	(Total cost about Rs.1000/ha X 2 ha = Rs.2000/-)
T2:	Use of organic formulation containing Pseudomonas luorescens & Trichoderma harzianu to be sprayed on the plants at regular intervals of 30 days at a dosage of 5g/ lit or 5ml/ lit (Total cost about Rs. 1000/ha X 1 ha = Rs.1000/-)
T3:	Use of EPN 2.5 kg/ha
	(Total cost about Rs.3300/ha X 1 ha = Rs.3300/-)

No. of Farmers : 05

Experimental plot Size : 1 Acre

Duration of Experiments : 3 Year

6. Title: Assessment of Bio fertilizer (Azospirilium and PSB) in onion for better production

Problem: No use of Bio fertilizer, Indiscriminate and excess use of chemical fertilizer

Causes:

- Lack of information about recommendation.
- Over use of chemical fertilizer

Treatments:

T1:	Farmer practices (Control): chemical fertilizer application
T2:	Application of RDF (75:60:50:25 NPKS kg/ha on soil test bases
Т3:	75 % NP with use of Bio fertilizer (Azospirilum and PSB 2.5 kg per ha. Each)

Source of technology (T2) & (T3): DOGR, Rajgurunagar (2016)

Technical Indicator: 1. Bulb diameter 2. Yield (q/ha)

Economic Indicator: 1. Cost of production, 2. Gross return (Rs/ha),

3. Net Return (Rs/ha), 4. B:C ratio

Cost:

T1: chemical fertilizer application (Total cost about Rs 5000/-/ha X 2 ha = Rs. 10000/-)

T2: Application of RDF (75:60:50:25 NPKS kg/ha on soil test bases

(Total cost about Rs.9000/-/ha X 1 ha = Rs. 9000/-)

T3: 75 % NP with use of Bio fertilizer

(Total cost about Rs.9800/-/ha X 1 ha = Rs. 9800/-)

No. of Farmers : 05
Experimental Plot Size : 1 Acre
Duration : 3 year

7. Title: Effect of Micronutrient application in chickpea

Problem: Deterioration in quality due to micronutrient deficiency in Chickpea

Causes:

- Lack of knowledge about micronutrient deficiency symptoms.
- Less knowledge about application of Micronutrient fertilizers.

Problem Cause Diagram

Treatments:

T1:	Farmer practices basal application of 150 kg DAP and foliar application of 50 kg Urea 25 DAS
T2:	Application of multi-micronutrient mixture Grade-V @ 40 kg/ha besides recommended dose of fertilizer (20:40:0 N:P2O5:K2O kg/ha)
Т3:	Application of 1% foliar spray of Government notified multi-micronutrient mixture either Grade II (Fe: 6.0, Mn: 1.0, Zn: 4.0, Cu: 0.3 and B: 0.5 per cent) or Grade I (Fe: 2.0, Mn: 0.5, Zn: 4.0, Cu: 0.3 and B: 0.5 per cent) at 30, 45 and 60 days after sowing along with 20 kg N and 40 kg P2O5 /ha as basal

Source of technology (T2): JAU, Junagadh (2021), (T3): AAU, Anand (2021)

Technical Indicator: 1. 100 grain weight, 2. Yield (q/ha.)

Economic Indicator: 1. Cost of Production (Rs/ha), 2. Gross return: (Rs/ha), 3. Net return:

(Rs/ha), 4. B:C Ratio

Cost:

T1:	50 kg Urea @ Rs. 350/- and 150 kg DAP @ Rs. 4350/-/ha
	(Total cost about Rs. 4700-/ha X 2 ha = Rs.9400/-)
T2:	40 kg multi-micronutrient mixture Grade-V @ Rs. 3200/-
	(Total cost about Rs.3200/-/ha X 1 ha = Rs.3200/-)
T3:	11.25 kg multi-micronutrient mixture either Grade II or I @ Rs. 4500/-
	(Total cost about Rs. 4500/-/ha X1 ha = Rs. 4500/-)

No. of Farmers : 05

Experimental Plot Size : 1 Acre

Duration : 3 year

8. Title: Assessment of Liquid Bio-fertilizer consortia (NPK) for nutritional management in Soybean

Problem: Indiscriminate and excess uses of chemical fertilizers.

Causes:

- Less production due to no use of Bio-fertilizers
- Lack of knowledge about benefits of bio-fertilizers

1. Problem Cause Diagram

Treatments:

T1:	Farmer practices basal application of 150 kg DAP and 50 kg Urea.
T2:	Application of 100 % RDF(N: P2O5- K2O; 30:60:00 kg ha-1)+ No use of bio-fertilizers
T3:	Application of 75% RDF(N: P2O5- K2O; 22.5:45:00 kg ha-1)+ Seed treatment with NPK consortia (10 ml/kg seed)

Source of technology: IISR (2015)

Technical Indicator: 1. No of Pods/plant, 2. Yield (q/ha.)

Economic Indicator: 1.Cost of Production (Rs/ha), 2. Gross return: (Rs/ha), 3. Net return: (Rs/ha), 4.

B:C Ratio

Cost:

T1:	50 kg Urea @ Rs. 300/- and 150 kg DAP @ Rs. 4350/-/ha
	(Total cost about Rs.4650/-/ha X 2 ha = Rs.9300/-)
T2:	65 kg Urea @ Rs. 390/- + 375 kg SSP @ Rs. 3225/-/ha
	(Total cost about Rs. 3615/-/ha X 1 ha = Rs.3615/-)
T3:	49 kg Urea @ Rs. 294/- & 281 kg SSP @ Rs. 2417/-/ha + NPK consortia @ Rs. 120/-
	(Total cost about Rs. 2831/-/ha X 1 ha = Rs.2831/-)

No. of Farmers : 05

Experimental Size : 1 Acre

Duration of Experiments : 3 years

9. Title Assessment on different varieties of oyster mushroom cultivation

Problem: Lack of knowledge about various type of oyster mushroom

Causes: Not aware about the variety

Treatments:

T1:	Farmers' practice: Dhingari mushroom
T2:	Recommendation practice: Sajor Kaju (Grey)
T3:	Recommendation Practice: Sajor Kaju (Blue)

Source of technology: DMR, Solan

Observation: - 1. Production kg/bag 2. Duration/days 3. B:C ratio

Total Cost : 4500/-No. of farm women : 05

Duration : 3 years

10. Assessment of dry heat treatment in improving the shelf life of pearl millet flour

Problem: Bajra flour turns bitter & rancid during storage

Causes: Lack of knowledge about blanching & dry heat method

Treatments:

T1	1:	Farmers' practice –Direct milling of Bajra flour
T2	2:	Dry heat treatment before milling(oven for 2 hours)
T	3:	Blanching of seeds before milling

Source of technology: CCS, Haryana Agriculture University, Hisar, MPKV, Rahuri **Parameters to be studied:** 1.Increase in shelf life (Days), 2.Overall Acceptability (%)

Total Cost : ₹1500 No. of farm women : 10 Duration : 3 year